
Written exam – mock exam
Data structures and algorithms (GEMAK117-MA)

June 3, 2024

Name: .

Neptun code: .

Part 1: theoretical questions (20 points)
I will ask a few definitions and theorems and one algorithm – from the UPDATED glossary,

now containing material on graphs as well.

Exercise 1 (9 points). State the following definitions (1 point each):

a) whole quotient, div operation

a div b =
⌊
a
b

⌋
b) small o notation

f and g are functions on N. f(n) = o(g(n)) if
f(n)

g(n)
→ 0 as n→∞.

c) algorithm

a step-by-step calculation to solve a problem

d) Fibonacci numbers

a number sequence defined recursively: F0 = 0, F1 = 1, then Fn = Fn−1 + Fn−2.

e) prime

p > 1 is a prime if it is only divisibly by 1 and itself.

f) congruence

a ≡ b mod n, if a and b have the same remainder when divided by n.

g) multiplicative inverse

a−1 mod n only exists when gcd(a, n) = 1. Then it’s the single solution x ∈ [0, n) of the
linear congruence equation ax ≡ 1 mod n.

h) directed graph

G = (V,E), where V is a finite set, set of vertices, E is a set of ordered pairs from V , set of
edges

i) path (in a graph)

sequence of connecting edges that don’t cross the same vertex twice

Exercise 2 (8 points). State the following theorems (2 points each):

a) reduction theorem (of the greatest common divisor)

a and b are whole numbers. gcd(a, b) = gcd(a− b, b).

1

b) number of digits (in base b)

x positive, whole number has ⌊logb(x)⌋+ 1 digits in base b.

c) the “master theorem”

given a recursive equation T (n) = aT
(n
b

)
+ f(n).

suppose a ≥ 1, b > 1, f is a function N→ R+.

define p = logb(a), g(n) = np test polynomial.

a) if f(n) grows polynomially slower than g(n), then T (n) = Θ
(
g(n)

)
.

b) if f(n) = Θ(g(n)), then T (n) = Θ
(
g(n) · log(n)

)
.

c) if f(n) grows polynomially faster than g(n), and also f(n) satisfies regularity:

for some c < 1, c · f(n) ≤ af
(n
b

)
,

then T (n) = Θ
(
f(n)

)
.

d) lower bound on comparison-based sorting

for a comparison-based sorting algorithm, at least Ω
(
n log(n)

)
comparisons are needed

Exercise 3 (3 points). Write down the algorithm for modular exponentiation.

1: MOD EXP(a,b,n,@c)
2: // INPUT: whole numbers a,b,n
3: // OUTPUT: c = (ab mod n)
4: write the exponent b in base 2: bnbn−1 . . . b1b0(2)
5: c← 1
6: FOR k ← n DOWNTO 0 DO // that is: read binary digits of b left to right
7: c← c2 mod n
8: IF bk = 1 THEN
9: c← c · a mod n
10: RETURN(c)

Part 2: exercises (20 points)
I will pick 4 exercises from 8 possible types, 5 points per exercise. Possible exercise types: 6

already known from the practical midterm (you can find worked out exercises of each type in the
lecture notes) + 2 new types: linear congruence equation and Dijkstra algorithm. Only showing
new types and their solutions below:

Exercise 4 (Linear congruence equation).

� variant 1: “Solve the linear congruence equation 4x ≡ 2 mod 10.”

step 1: calculate gcd(a, n) = gcd(4, 10) – Euclidean algorithm (just the green part of the
table yet)

2

i n a q r y⋆ x⋆

0 10 4 2 2 1 0− 1 · 2 = −2
1 4 2 2 0 0 1− 0 · 2 = 1
2 2 0 1 0

d = gcd(10, 4) = 2.

step 2: check if d divides b = 2 (right hand side of congruence). d = 2|2 = b, OK! (if d does
not divide b, no solutions.) means there should be d = 2 basic solutions, meaning solutions
0 ≤ x < n = 10.

step 3: find basic solutions. for this, we need coefficient x⋆ from the linear combination
d = x⋆a+y⋆n. go back to the table of Euclidean algorithm, and finish the extended Euclidean
algorithm! (right hand side of the table, in red above)

we get x⋆ = −2.

the special solution: x0 = x⋆ · b
d⋆

mod n = −2 · 2
2

mod 10 = −2 mod 10 = 8.

the other solutions (now just 1 more):

xi = x0 + i · n
d⋆

mod n, i = 1, 2, . . . , d⋆ − 1

x1 = 8 + 1 · 10
2

mod 10 = (8 + 5) mod 10 = 13 mod 10 = 3.

� variant 2: “Calculate the multiplicative inverse x = 8−1 mod 11.”

basically: by definition of multiplicative inverse, this means: solve linear congruence equation
8x ≡ 1 mod 11. see the solution above. – it should be true that gcd(8, 11) = 1, and there’s
only 1 basic solution, the special solution x0.

Exercise 5 (Dijkstra algorithm). Find the shortest paths using Dijkstra’s algorithm from source
s = 1 in the following graph:

1

2

3

4

42

1

3

37

3

0) initially: S = {} (empty set), Q = {1, 2, 3, 4},
since s = 1, d = [0,∞,∞,∞], π = [NIL,NIL,NIL,NIL].

color coding below:
in d and π: finalized values, freshly updated values.
in drawing: u and its outgoing edges; vertices already in S
(and their outgoing edges)

1

2

3

4

42

1

3

37

1) pick u from Q (still green/red) with smallest d[u]: u = 1.
move u to S and update with all edges going out of u (see
if we can get a shorter path to vertices in Q through these
edges):
S = {1}, Q = {2, 3, 4},
0 + 4 <∞, 0 + 2 <∞: reach 2 and 4 from vertex 1.
d = [0, 4,∞, 2], π = [NIL,1,NIL,1].

1

2

3

4

42

1

3

37

2) again, pick u from Q (still green/red) with smallest d[u]:
u = 4. move u to S and update with all edges going out of
u:
S = {1, 4}, Q = {2, 3},
2 + 1 < 4, 2 + 7 <∞: reach 2 and 3 through 4
d = [0, 3, 9, 2], π = [NIL,4,4,1].

1

2

3

4

42

1

3

37

3) repeat...
u = 2.
S = {1, 2, 4}, Q = {3},
3 + 3 < 9
d = [0, 3, 6, 2], π = [NIL,4,2,1].

1

2

3

4

42

1

3

37

4

4) repeat...
u = 3.
S = {1, 2, 3, 4}, Q = {},
(no outgoing edges to update with.)
d = [0, 3, 6, 2], π = [NIL,4,2,1].

1

2

3

4

42

1

3

37

5) Q is empty, we are done!
final result: d = [0, 3, 6, 2], π = [NIL,4,2,1].
read shortest paths: highlight (π[u], u) edges in red:
(NIL,1) – not an edge, no highlight; (4,2), (2,3), (1,4)

1

2

3

4

42

1

3

37

Scoring
� total: 40 points
� 20 points- : 2 (sufficient)
� 24 points- : 3 (mediocre)
� 28 points- : 4 (good)
� 32 points- : 5 (excellent)

5

